On the Yau?Tian?Donaldson Conjecture for Generalized Kähler?Ricci Soliton Equations

نویسندگان

چکیده

Let $(X, D)$ be a log variety with an effective holomorphic torus action, and $\Theta$ closed positive $(1,1)$-current. For any smooth function $g$ defined on the moment polytope of we study Monge-Amp\`{e}re equations that correspond to generalized twisted K\"{a}hler-Ricci $g$-solitons. We prove version Yau-Tian-Donaldson (YTD) conjecture for these general equations, showing existence solutions is always equivalent equivariantly uniform $\Theta$-twisted $g$-Ding-stability. When current associated invariant linear system, further show equivariant special test configurations suffice testing stability. Our results allow arbitrary klt singularities generalize most previous (uniform) YTD (twisted) K\"{a}hler-Ricci/Mabuchi solitons or K\"{a}hler-Einstein metrics.

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Soliton stability criterion for generalized nonlinear Schrödinger equations.

A stability criterion for solitons of the driven nonlinear Schrödinger equation (NLSE) has been conjectured. The criterion states that p'(v)<0 is a sufficient condition for instability, while p'(v)>0 is a necessary condition for stability; here, v is the soliton velocity and p=P/N, where P and N are the soliton momentum and norm, respectively. To date, the curve p(v) was calculated approximatel...

متن کامل

Step Soliton Generalized Solutions of the Shallow Water Equations

1 Department of Fluid Dynamic, IMPA, Dona Castorina 110, Jardı́n Botànico, 22460-320 Rio de Janeiro, RJ, Brazil 2 Oceanology Institute, Environmental Agency, Avenida Primera, 18406, Flores, Playa, 11600 C. Habana, Cuba 3 Laboratoire AOC, Université des Antilles et de la Guyane, Campus de Fouillole, 97159 Pointe-à-Pitre, Guadeloupe 4 Departamento de Matemáticas, Facultad de Matemáticas y Computac...

متن کامل

Five Lectures on Soliton Equations

which commute with the flow defined by (0.1) (we set τ1 = z and τ2 = τ). The important fact is that the right hand sides Pn of equations (0.2) are polynomials in v and its derivatives, i.e., differential polynomials in v. This fact allows us to treat the KdV hierarchy (0.2) in the following way. Consider the ring R = C[v]n≥0 of polynomials in the variables v (n) (we shall write v for v(0)). Let...

متن کامل

global results on some nonlinear partial differential equations for direct and inverse problems

در این رساله به بررسی رفتار جواب های رده ای از معادلات دیفرانسیل با مشتقات جزیی در دامنه های کراندار می پردازیم . این معادلات به فرم نیم-خطی و غیر خطی برای مسایل مستقیم و معکوس مورد مطالعه قرار می گیرند . به ویژه، تاثیر شرایط مختلف فیزیکی را در مساله، نظیر وجود موانع و منابع، پراکندگی و چسبندگی در معادلات موج و گرما بررسی می کنیم و به دنبال شرایطی می گردیم که متضمن وجود سراسری یا عدم وجود سراسر...

Topological soliton solutions of the some nonlinear partial differential equations

In this paper, we obtained the 1-soliton solutions of the symmetric regularized long wave (SRLW) equation and the (3+1)-dimensional shallow water wave equations. Solitary wave ansatz method is used to carry out the integration of the equations and obtain topological soliton solutions The physical parameters in the soliton solutions are obtained as functions of the dependent coefficients. Note t...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Communications on Pure and Applied Mathematics

سال: 2022

ISSN: ['1097-0312', '0010-3640']

DOI: https://doi.org/10.1002/cpa.22053